Equitable defective coloring of sparse planar graphs

نویسندگان

  • Lee Williams
  • Jennifer Vandenbussche
  • Gexin Yu
چکیده

A graph has an equitable, defective k-coloring (an ED-k-coloring) if there is a kcoloring of V (G) that is defective (every vertex shares the same color with at most one neighbor) and equitable (the sizes of all color classes differ by at most one). A graph may have an ED-kcoloring, but no ED-(k + 1)-coloring. In this paper, we prove that planar graphs with minimum degree at least 2 and girth at least 10 are ED-k-colorable for any integer k ≥ 3. The proof uses the method of discharging. We are able to simplify the normally lengthy task of enumerating forbidden substructures by using Hall’s Theorem, an unusual approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equitable Coloring of Sparse Planar Graphs

A proper vertex coloring of a graph G is equitable if the sizes of color classes differ by at most one. The equitable chromatic threshold χeq(G) of G is the smallest integer m such that G is equitably n-colorable for all n ≥ m. We show that for planar graphs G with minimum degree at least two, χeq(G) ≤ 4 if the girth of G is at least 10, and χeq(G) ≤ 3 if the girth of G is at least 14.

متن کامل

Defective List Colorings of Planar Graphs

We combine the concepts of list colorings of graphs with the concept of defective colorings of graphs and introduce the concept of defective list colorings. We apply these concepts to vertex colorings of various classes of planar graphs. A defective coloring with defect d is a coloring of the vertices such that each color class corresponds to an induced subgraph with maximum degree at most d. A...

متن کامل

On Equitable Coloring of d-Degenerate Graphs

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most 1. A d-degenerate graph is a graph G in which every subgraph has a vertex with degree at most d. A star Sm with m rays is an example of a 1-degenerate graph with maximum degree m that needs at least 1 + m/2 colors for an equitable coloring. Our main result is that every n-...

متن کامل

Equitable Coloring and Equitable Choosability of Planar Graphs without 6- and 7-Cycles

A graph G is equitably k-choosable if for any k-uniform list assignment L, G is L-colorable and each color appears on at most d|V (G)|/ke vertices. A graph G is equitable kcolorable if G has a proper vertex coloring with k colors such that the size of the color classes differ by at most 1. In this paper, we prove that if G is a planar graph without 5and 7-cycles, then G is equitably k-choosable...

متن کامل

Equitable coloring planar graphs with large girth

A proper vertex coloring of a graph G is equitable if the size of color classes differ by at most one. The equitable chromatic threshold of G, denoted by ∗Eq(G), is the smallest integer m such that G is equitably n-colorable for all n m. We prove that ∗Eq(G) = (G) if G is a non-bipartite planar graph with girth 26 and (G) 2 or G is a 2-connected outerplanar graph with girth 4. © 2007 Elsevier B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 312  شماره 

صفحات  -

تاریخ انتشار 2012